

Video Link

Begin with $3 \times 5 = 15$

Begin with 6 x 4 = 24

Pips versus Pods

Summary

This task invites students to attend more closely to the different roles that the pips and the pods play in multiplication.

Tasks

1. Students make 3 x 5 = 15 on their iPads. If your partner can only put one more finger on the screen where should it go to make the product the largest possible?

Add a pip-finger

Add a pod-finger

2. Challenge students to make 6 x 4 = 24. Where should the extra finger go to make the largest product?

or

Add a pip-finger

Add a pod-finger

- Predict how to make the largest product for 5 x 5, 2 x 6, 6 x 2. Would
 we add another pip or another pod? After making their predictions,
 have students check to see if their predictions were correct.
- 4. Have students draw what 3 x 4 = 12 would look like in Grasplify using pencil crayons to show what the colours would look like in the pips and the pods. Then draw a second picture that shows what Grasplify would look like if another pip-finger was added. Finally, draw a third picture that shows what Grasplify would look like if you had 3 x 4 = 12 and created another pod.

What to Watch For

• We want students to notice the relationship between the pips and the pods and be able to explain how the product is influenced by the addition of a pip or a pod. By adding a pip to 3 x 5 = 15, it increases the product by 5 because an additional pip appears in each of the existing 5 pods. Alternately, by adding a pod, it increases the product only by 3 because an additional pod includes 3 pips.

Questions to Ask

- What happens to the product when we add a pip-finger?
- What happens to the product when we add a pod-finger?
- Which creates the largest product? Why?
- Do you know if your prediction will be correct for sure, without trying it out on Grasplify? How do you know?
- What do you do when both numbers are the same? How do you know which will create the larger product?

Extending Student Learning

 Early finishers can be challenged with a more open task, Place as many pip-fingers as you want on the screen. Your partner will place as many pod-fingers as they want on the screen. Which side would you increase by one to get the largest product? Students can continue to play this game by taking turns.

Assessment

Alternatively, invite students to come up with a context that models the pips versus pods situation they have explored. For example, if there are 4 motorcycles, each of which has 3 wheels, would you have more wheels in total by having an extra motorcycle or by having an extra wheel on each motorcycle? This might initiate a discussion about different circumstances in which it would be better to have more wheels or less wheels. A picture of a 3-wheeled motorcycle may help some students.

Try to generate a more general statement, such as, "You can make a bigger product by putting the extra finger on the side with the smaller number."